Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization and Robust Design of Heat Sinks for Automotive Electronics Applications

2004-03-08
2004-01-0685
The increasing power requirement for automotive electronics (radios, etc.), combined with ever-shrinking size and weight allowances, is creating a greater need for optimization and robust design of heat sinks. Not only does a heat sink directly affect the overall performance and reliability of a specific electronics application, but a well-designed, optimized heat sink can have other benefits - such as eliminating the requirement for special fans, reducing weight of the application, eliminating additional heat sink support structures, etc. Optimizing heat sink efficiency and thermal performance offers a challenge, due to the many competing design requirements. These requirements include effecting greater temperature reductions, accommodating vehicle packaging requirements and size limitations, generating a uniform heat distribution, etc., and all the while reducing the heat sink cost.
Technical Paper

Inaudible Knock and Partial-Burn Detection Using In-Cylinder Ionization Signal

2003-10-27
2003-01-3149
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. Maximizing engine power and fuel economy is limited by engine knock for a given air-to-fuel charge. Therefore, the ability to detect engine knock and run the engine at its knock limit is a key for the best power and fuel economy. This paper shows inaudible knock detection ability using in-cylinder ionization signals over the entire engine speed and load map. This is especially important at high engine speed and high EGR rates. The knock detection ability is compared between three sensors: production knock (accelerometer) sensor, in-cylinder pressure and ionization sensors. The test data shows that the ionization signals can be used to detect inaudible engine knock while the conventional knock sensor cannot under some engine operational conditions.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Pressure Signal

2003-10-27
2003-01-3266
MBT timing for an internal combustion engine is also called minimum spark timing for best torque or the spark timing for maximum brake torque. Unless engine spark timing is limited by engine knock or emission requirements at a certain operational condition, there exists an MBT timing that yields the maximum work for a given air-to-fuel mixture. Traditionally, MBT timing for a particular engine is determined by conducting a spark sweep process that requires a substantial amount of time to obtain an MBT calibration. Recently, on-line MBT timing detection schemes have been proposed based upon cylinder pressure or ionization signals using peak cylinder pressure location, 50 percent fuel mass fraction burn location, pressure ratio, and so on. Because these criteria are solely based upon data correlation and observation, both of them may change at different engine operational conditions. Therefore, calibration is still required for each MBT detection scheme.
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Acoustic Modeling and Radiated Noise Prediction for Plastic Air-Intake Manifolds

2003-05-05
2003-01-1448
Reliable prediction of the radiated noise due to the air pressure pulsation inside air-intake manifolds (AIM) is of significant interest in the automotive industry. A practical methodology to model plastic AIMs and a prediction process to compute the radiated noise are presented in this paper. The measured pressure at the engine inlet valve of an AIM is applied as excitation on an acoustic boundary element model of the AIM in order to perform a frequency response analysis. The measured air pressure pulsation is obtained in the crank-angle domain. This pressure is read into MATLAB and transformed into the frequency domain using the fast Fourier transform. The normal modes of the structure are computed in ABAQUS and a coupled analysis in SYSNOISE is launched to couple the boundary element model and the finite element model of the structure. The computed surface vibration constitutes the excitation for an acoustic uncoupled boundary element analysis.
Technical Paper

Motorized Throttle Positioning Simulation Model

2003-03-03
2003-01-0222
A motorized throttle model has been developed in block diagram form (Simulink®). Its primary input is the control signal to the throttle motor's electrical H-driver. The model's primary output is throttle position sensor signal. The model's utility for vehicle and engine simulations is proved with validation data. While a DC motor actuated positioning device is well known, special attention is paid to modeling subtle but significant physical characteristics. Further, the model is structured to overcome numerical simulation issues. The laboratory environment that connects a Powertrain Control Module (PCM) to vehicle powertrain simulation hardware is diagramed. This paper is useful to those modeling this and similar actuators as it points out pitfall avoidance for real time simulation issues. It avoids reliance on difficult-to-measure characteristics that cloud validation validity.
Technical Paper

Equations for Physical Properties of Automotive Coolants

2003-03-03
2003-01-0532
1.0 During the warm up process of the coolant in automotive heater systems physical properties such as the density, dynamic viscosity, kinematic viscosity, specific heat and thermal conductivity vary with temperature. To conduct any heater analysis, therefore, it is essential that such variations with temperatures be evaluated. In the present paper a comprehensive literature search is conducted for the published physical properties of the automotive coolants ethylene glycol and propylene glycol. The data are analyzed and compared, and equations describing the variation of the above named physical properties with temperature are derived and presented. The effect of the temperature on the internal heat transfer coefficient is discussed. A comparison of the heat transfer performance between the two glycol coolants is presented. The temperature range studied extends from - 35 to at least 125 degree Celsius.
Technical Paper

A Reusable Control System Architecture for Hybrid Powertrains

2002-10-21
2002-01-2808
System integration is the path to successful entry of hybrid electric vehicle (HEV) technology into the marketplace. A modular solution capable of meeting varying customer requirements is needed. The controller must possess a flexible hierarchical architecture that insures cross-platform compatibility and provides adaptability for various engine, motor, transmission, and battery configurations. A hybrid powertrain supervisory controller (PSC) has been designed for an advanced parallel-type HEV prototype, which uses a continuously variable transmission (CVT). The controller schedules torque commands for the engine and motor and chooses the transmission ratio to meet driver demanded acceleration. The controller is organized around a state machine, which determines how best to employ powertrain components to satisfy the driver while maximizing fuel economy.
Technical Paper

Design and Development of Light Weight Al Spindle

2002-03-04
2002-01-0676
The demand for improved vehicle fuel economy drives the auto engineers to look for opportunities in weight reduction of automotive systems and components. This paper presents inventions on the design and development of a lightweight spindle. In this new product, the spindle body is made from an Al alloy for a substantial weight reduction in comparison to the tradition iron spindle body. The shaft of the spindle is made from high strength steel to meet strength requirements. The design shows the unique feature of the joining area between the spindle body and shaft. The related joining process is applied to produce a strong joint between the two parts made of different materials. The testing results will be presented and discussed.
Technical Paper

Development of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2001-07-09
2001-01-2332
The International Space Station (ISS) internal thermal control system (ITCS) has been developed jointly by the Boeing Corporation, Huntsville, Alabama, and Honeywell Engines & Systems, Torrance, California, to meet ISS internal thermal control needs. The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first module, the US Laboratory Module, was launched in February 2001 and is now operational on the ISS. The dual loop system is comprised of a low-temperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a three-way mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, a pump bypass assembly (PBA), and a heat exchanger.
Technical Paper

R134A Suction Line Heat Exchanger in Different Configurations of Automotive Air-Conditioning Systems

2001-05-14
2001-01-1694
A suction line heat exchanger (SLHX) transfers heat from the condenser outlet to the suction gas. In a TXV (thermostatic expansion valve) system, the performance improvement with a 60 to 80 % effective SLHX is expected to be on the order of 8 to 10 % for capacity, and 5 to 7 % for COP for high outdoor air temperatures of 43ºC. In a FOT (fixed orifice tube) system, the performance improvement was calculated to be about 10 to 15 %. The calculated improvements have been verified experimentally within a few percent.
Technical Paper

Fuel Economy Improvements through Improved Automatic Transmission Warmup - Stand Alone Oil to Air (OTA) Transmission Cooling Strategy with Thermostatic Cold Flow Bypass Valve

2001-05-14
2001-01-1760
The stand alone oil to air (OTA) transmission cooling strategy with thermostatic cold flow bypass valve has been shown to be an effective means of improving the warmup of an automatic transmission. Improving the system warmup rate of an automatic transmission significantly improves its efficiency by reducing losses resulting from extremely viscous transmission fluid and can allow for calibration changes that improve overall transmission performance. Improved transmission efficiency in turn allows for improved engine efficiency and performance. The improvements obtained from increased transmission and engine efficiency result in an overall increase in vehicle fuel economy. Fuel economy and consumption are important parameters considered by the vehicle manufacturer and the customer. Fuel economy can be considered as important as reliability and durability.
Technical Paper

Water Condensate Retention and “Wet” Fin Performance in Automotive Evaporators

2001-03-05
2001-01-1252
Water condensate retained inside an automotive evaporator has remained as one of the primary sources of unpleasant “odors”, which in turn can drive up the warranty cost for automotive manufacturers. The “wet” evaporator fin can also underperform due to the presence of condensate blocking the air passage. Moreover, condensate retention can be a potential factor of freezing up evaporators. Thus, an evaporator fin must be designed such that it can shed and drain water condensate as well as provide an excellent heat transfer capability. While the importance of water retention is well known, there seems lacking of a comprehensive way to evaluate the water retention characteristics of a particular product. In this work, attempts were made to answer four questions: (1) What is the mechanism that controls water condensate retention characteristics in an automotive evaporator? (2) Can different water retention evaluation methods reveal the same characteristics?
Technical Paper

Instrument Clusters for Electric Vehicles

2001-03-05
2001-01-3959
Environmental concerns and changes in regulations around the world are turning mass-production electric vehicles (EVs) a reality. While the average driver is very familiar with the instruments available for the current internal combustion engine vehicles (ICEVs), the same does not hold for EVs. They require unique gages and tell-tales (also known as warning lights), tailored to their architecture, operating modes and intended use. This paper makes a comparison of the instruments used in ICEVs and EVs, suggesting a minimum set and standardization of the associated symbols.
X